Synthesis and characterization of SiO₂ nanospheres

D. E. BACIU^{*}, J. SIMITZIS

National Technical University of Athens, School of Chemical Engineering, Department III "Materials Science and Engineering", Laboratory Unit "Advanced and Composite Materials", 9 Heroon Polytechniou str., Zografou Campus, 157 73 Athens, Greece

In the last few years, there is an increasing interest in fabrication of nanosphere structures from inorganic materials such as SiO₂, TiO₂, ZrO₂, ZnS, GaP, CdSe, ZrC, Bi₂Se₃ and Ni/SiO₂, owing to their important applications in optical, catalytic and sensing devices (such as drug-delivery carriers) in addition to the general core-shell and nanotubular structures. In this work monodispersed SiO₂ nanospheres were synthesized using a modified Stöber method. The obtained SiO₂ nanospheres were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD).

(Received February 12, 2013; accepted April 11, 2013)

Keywords: FTIR, SEM, SiO₂

1. Introduction

In the last few years, controlled growth of nanostructures with desired morphology is of great significance due to their novel properties and potential applications [1]. Especially, there is an increasing interest in fabrication of nanosphere structures from inorganic materials such as SiO₂, TiO₂, ZrO₂, ZnS, GaP, CdSe, ZrC, Bi₂Se₃ and Ni/SiO₂, owing to their important applications in optical, catalytic and sensing devices (such as drug-delivery carriers) in addition to the general core-shell and nanotubular structures [1, 2]. It has found that nano-scaled materials with sphere structure show a lower density, higher surface area and distinct optical property [1].

 SiO_2 nanospheres have been extensively investigated for various biomedical and biotechnological applications such as controlled drug release and delivery, analytical tools, and imaging [3]. This is mainly due to their unique optical properties, low density, high specific surface area, low toxicity and high and selective adsorption capacity [2, 3, 4, 5].

The most common method used to prepare SiO_2 nanospheres is the Stöber method, which comprises the hydrolysis and condensation of TEOS under alkaline conditions in ethanol [6, 7, 8]. Stöber silica particles are generally described as nonporous and monodisperse spheres with diameters in the colloidal range [9]. This method is remarkable in its simplicity and does not require surface modification or addition of surfactants to achieve excellent control of size, size distribution and smooth spherical morphology of silica particles [10].

The aim of this work is the synthesis and characterization of SiO_2 nanospheres using a modified

Stöber method varying the proportion of TEOS in the initial mixture and the temperature [11].

2. Experimental

Monodispersed SiO₂ nanospheres were synthesized by hydrolysis and condensation of tetraethoxysilane (TEOS) (99%, Fluka) in a water–ethanol mixed solution containing dodecylamine (DDA) (98%, Aldrich) as a template and hydrolysis basic catalyst. The precipitate was received by filtration and then it was thermally treated from 80 $^{\circ}$ C up to 700 $^{\circ}$ C with a heating rate of 10 $^{\circ}$ C/min and it remained at 700 $^{\circ}$ C for 4 h (Table 1).

The obtained SiO₂ nanospheres were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD).

The SEM studies were carried out in a FEI Quanta 200 Scanning Electron Microscope (SEM).

FTIR spectra were recorded using a Perkin Elmer Spectrum 2000, on discs prepared by mixing of the sample powder and KBr.

XRD measurements were performed with a Siemens D5000 X-Ray Diffractometer by using sample of the material as powder.

Table 1. Raw materials and processing conditions of the modified Stöber method used for the preparation of SiO₂ nanospheres.

Materials (SiO ₂ nano- spheres)	Raw materials							
CODE	TEOS (ml)	Ethanol (ml)	H (1	l ₂ O ml)	DDA (g)			
M1/from ref. [11]	10	160	100		1			
M2	8	160	100		1			
M3	2	160	1	00	1			
Processing conditions								
Stirring of mixture during hvdrolvsis	f l prec wa	Drying of precipitate after washing and filtration		Calcination				
$15^{\circ}C/4h$		80 °C/4h		600 ⁰ C/4h				
23 °C/4h		80 ⁰ C/4h		700 ⁰ C/4h				
23 °C/4h		80 ⁰ C/4h		700 [°] C/4h				

Material M1: raw materials and processing conditions according to bibliography [11].

Materials M2 and M3: raw materials and processing conditions of the modified Stöber method used for the preparation of SiO_2 nanospheres.

3. Results and discussion

<u>SEM</u>

Fig. 1(a), (b), (c) shows SEM images revealing the general morphology of the SiO₂ nanospheres after thermal treatment up to 700 0 C for 4h (M2).

According to Fig. 1 (a), (b) and (c) based on SEM images, the SiO₂ particles (M2) produced after thermal treatment up to 700 0 C, show uniform size and spherical morphology.

By decreasing the proportion of TEOS in the initial mixture from 10 to 8 ml and by increasing the temperature of hydrolysis from 15 to 23 0 C the diameter of SiO₂ nanospheres were reduced from 700±50 nm [11], material M1, to 350 ± 50 nm, material M2.

Fig. 1. (a), (b) and (c) SEM images of the SiO_2 produced particles (M2) at different magnifications.

Fig. 2. (a), (b) and (c) SEM images of the SiO₂ produced particles (M3) at different magnifications.

According to Fig. 2 (a), (b) and (c) based on SEM images, the SiO₂ produced particles (M3) after thermal treatment up to 700 0 C, show poor spherical morphology and large aggregation. By decreasing the proportion of TEOS in the initial mixture from 10 to 2 ml and by increasing the temperature of hydrolysis from 15 to 23 0 C the diameter of SiO₂ nanospheres were reduced from 700 nm [11], material M1, to 150 ± 50 nm, material M3.

FTIR

Fig. 3. FTIR spectra of material (M2) after different thermal treatments: (a) 80 °C/4h and (b) 700 °C/4h.

Fig. 2 (a), (b), (c) shows SEM images revealing the general morphology of the SiO_2 nanospheres after thermal

treatment up to 700 $\,^{0}$ C for 4 h (M3).

Group	Wavenumber * (cm ⁻¹)	Wavenumber ** (cm ⁻¹)		
		Thermal treatment (80 ⁰ C/4h)	Thermal treatment (700 ⁰ C/4h)	
Stretching of OH				
(water pore and surface water)	3000-3800	3443	3430	
C-H stretching mode of hydrocarbon chain				
of dodecylamine	2925	2918	-	
	2850	2850	-	
Deformation vibration of -CH2, -CH3 of				
the incorporated dodecylamine	1543	1540	-	
	1460	1460	-	
Si-OH	960	948	944	
(surface silanol group)	1640	1633	1632	
Assymetric stretching vibration band of Si-				
O-Si	1000-1300	1084	1088	
Symmetric stretching vibration band of Si-	800	821	798	
O-Si	465	460	460	

Table 2. Groups and wavenumbers of the FTIR spectra of the material (M2) produced.

*: wavenumber (cm⁻¹) for the absorption peak according to the literature [12].

**: wavenumber (cm⁻¹) determined from the FTIR spectra of the material (M2) produced.

According to FTIR measurements dodecylamine was completely removed after thermal treatment up to 700 0 C.

<u>XRD</u>

According to the Fig. 3, the XRD diffractogram of the SiO₂ particles thermally treated up to 700 0 C for 4 h confirms the amorphous state of this material (M2)[13].

Fig. 3. XRD diffractogram of the SiO₂ produced particles (M2).

3. Conclusions

The final temperature of calcination was increased for the materials produced (M2, M3) compared to that of material M1 produced in ref. [11] in order to ensure that all the amount of the dodecylamine has been removed.

Comparison of the conditions used for materials M1 and M2:

By decreasing the amount of TEOS or its proportion in the raw materials mixture and by increasing the temperature of the hydrolysis, the SiO₂ nanospheres of final material after calcination were reduced from 700 ± 50 nm (M1) to 350 ± 50 nm (M2).

Comparison of the conditions used for materials M2 and M3:

By decreasing the amount of TEOS or its proportion in the raw materials mixture, the SiO₂ nanospheres of final material after calcinations were reduced from 350 ± 50 nm (M2) to 150 ± 50 nm (M3).

Consequently, the amount or the proportion of TEOS in the mixture has more important meaning compared to the hydrolysis temperature in order to reduce the diameter of nanospheres.

Acknowledgements

The authors gratefully acknowledge Mr. Loukas Zoumpoulakis, Assistant Professor in the School of Chemical Engineering, Department of Materials Science and Engineering, National Technical University of Athens, for his technical collaboration. Also, the authors would like to thank Prof. A. Vgenopoulos of the School of Mining Engineering and Metallurgy, for kindly helping for FTIR measurements.

Also the authors would like to thank Mr. Dimitris Bouranis, Associate Professor, Laboratory of Plant Physiology and Morphology and Mr. Kostas Fasseas, Associate Professor, Laboratory of Electron Microscopy in the Agricultural University of Athens, for the kindly helping for SEM measurements.

References

- Yu Shen, Yanbo Wu, Xinyong Li, Qidong Zhao, Yang Hou, Materials Letters, In Press, 1-4, (2013).
- [2] L. Z. Pei, Materials Characterization, 59, 656 (2008).
- [3] Akhilesh K. Gaharwar, Christian Rivera, Chia-Jung Wu, Burke K. Chan, Gudrun Schmidt, Materials Science and Engineering C, In Press, (2013).
- [4] Anthony J. Di. Pasqua, Khrishna, K. Sharma, Yan-Li Shi, Bonnie B. Toms, Wayne Ouellette, James C. Dabrowiak, Tewodros Asefa, Journal of Inorganic Biochemistry, **102**, 1416 (2008).
- [5] H. Misran, M. A. Yarmo, S. Ramesh, Ceramics International **39**, 931 (2013).
- [6] P. A. Buining, L. M. Liz-Marzan, A. P. Philipse, Journal of Colloid and Interface Science, **179**, 318 (1996).

- [7] R. Watanabe, T. Yokoi, E. Kobayashi, Y. Otsuka, A. Shimojima, T. Okubo, T. Tatsumi, Journal of Colloid and Interface Science 360, 1 (2011).
- [8] Jong-Gil Oh, Hansung Kim, Current Applied Physics 13, 130 (2013).
- [9] Nicolas Plumeré, Adrian Ruff, Bernd Speiser, Verena Feldmann, Hermann A. Mayer, Journal of Colloid and Interface Science 368, 208 (2012).
- [10] L. M. Rossi, L. Shi, N. Rosenzweig, Z. Rosenzweig, Biosensors and Bioelectronics, 21, 1900 (2006).
- [11] B. Cheng, L. Zhao, J. Yu, X. Zhao. Materials Research Bulletin, 43, 714 (2008).
- [12] Li Zhao, Jiaguo Yu, Bei Cheng, Chengzhong Yu, Journal of Non-Crystalline Solids, 351, 3593 (2005).
- [13] Y. D. Wang, C. L. M, H. D. Li, S. Zhang, Materials Chemistry and Physics 107, 248 (2008).

^{*}Corresponding author: dianabaciuro@yahoo.com